|
Ficha bibliografica
Código: | 512.5 G82 1999 [Universidad Católica San Pablo] | Ubicación: | Segundo piso estanteria abierta | Autor Personal: | Grossman, Stanley I. | Edición: | 5a. ed. | Título | Álgebra lineal | Ciudad:
| México | Editorial:
| McGraw-Hill | Año:
| 1999 | Descripción: | 634 páginas; A119 gráfs., cuads. 24 cm. | ISBN: | 9701008901 | Notas: | F/I 02/07/2001 | Palabras Claves: | ALGEBRAS LINEALES,;
| Términos Locales: | Algebra lineal - Estudio y enseñanza - Problemas, ejercicios;
| Encabezados Geográficos: | |
| |
|
Código: | 512.5 G82 1999 [Universidad Católica San Pablo] | 100: | Grossman, Stanley I. | 250: | 5a. ed. | 245 | Álgebra lineal | 260: | México: McGraw-Hill: 1999: 300: | 634 páginas; A119 gráfs., cuads. 24 cm. | 020: | 9701008901 | 500: | F/I 02/07/2001 | 650: | ALGEBRAS LINEALES, | 653 | Algebra lineal - Estudio y enseñanza - Problemas, ejercicios | |
|
Grossman, Stanley I.. Álgebra lineal . --5a. ed.. --México: McGraw-Hill: 1999. # Ingreso:U0001971 634 páginas; A119 gráfs., cuads..24 cm..
|
CONTENIDO 1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES 1.1 Introducción 1.2 Dos ecuaciones lineales con dos incógnitas 1.3 m ecuaciones con n incógnitas: eliminación de Gauss - jordan y gaussiana 1.4 Sistemas de ecuaciones homogéneos 1.5 Vectores y matrices 1.6 Productos vectorial y matricial 1.7 Matrices y sistemas de ecuaciones lineales 1.8 Inversa de una matriz cuadrada 1.9 Transpuesta de una matriz 1.10 Matrices elementales y matrices inversas 1.11 Factorizaciones LU de una matriz 1.12 Teoría de gráficos: una aplicación de matrices 2. DETERMINANTES 2.1 Definiciones 2.2 Propiedades de los determinantes 2.3 Demostración de tres teoremas importantes y algo de historia 2.4 Determinantes e inversas 2.5 Regla de Cramer 3. VECTORES EN R2 Y R3 3.1 Vectores en el plano 3.2 El producto escalar y las proyecciones en R2 3.3 Vectores en el espacio 3.4 El producto cruz de dos vectores 3.5 Rectas y planos en el espacio 4. ESPACIOS VECTORIALES 4.1 Introducción 4.2 Definición y propiedades básicas 4.3 Subespacios 4.4 Combinación lineal y espacio generado 4.5 Independencia lineal 4.6 Bases y dimensión 4.7 Rango, nulidad, espacio d elos renglones y espacio d elas columnas de una matriz 4.8 Cambio de base 4.9 Bases ortonormales y proyecciones en Rn 4.10 Aproximación por mínimos cuadrados 4.11 Espacios con producto interno y proyecciones 4.12 Fundamentos de la teoría de espacios vectoriales: existencia de una base 5. TRANSFORMACIONES LINEALES 5.1 Definición 5.2 Propiedades de las transformaciones lineales: imagen y núcleo 5.3 Representación matricial de una transformación lineal 5.4 Isomorfismos 5.5 Isometrías 6. EIGENVALORES. EIGENVECTORES Y FORMAS CANÓNICAS 6.1 Eigenvalores y eigenvectores 6.2 Un modelo de crecimiento de población 6.3 Matrices simejantes y diagonalización 6.4 Matrices simétricas y diagonalización ortogonal 6.5 Formas cuadráticas y secciones cónicas 6.6 Forma canónica de Jordan 6.7 Una aplicación importante: forma matricial de ecuaciones diferenciales 6.8 Una perspectiva diferente: los teoremas de Cayley-Hamilton y Gershgorin APÉNDICE 1. Inducción matemática APÉNDICE 2. Números complejos APÉNDICE 3. El error numérico en los cálculos y la complejidad computacional APÉNDICE 4. Eliminación gaussiana con pivoteo APÉNDICE 5. Utilización de Matlab Respuestas a los problemas impares ÍNDICE I-1 |
Número Ingreso |
Código |
Base de Datos |
Ubicación |
Tipo |
# Ej. |
Status |
Devolución |
Reserva | U0001971 | 512.5 G82 1999 | Universidad Católica San Pablo | Segundo piso estanteria abierta | Original | 1 | Disponible | | U0001972 | 512.5 G82 1999 | Universidad Católica San Pablo | Segundo piso estanteria abierta | Copia | 3 | Disponible | | U0003406 | 512.5 G82 1999 | Universidad Católica San Pablo | Segundo piso estanteria abierta | Copia | 2 | Disponible |
|
|
|
Obras RelacionadasObras del mismo Autor |
w
| |